Saturday, 27 July 2013

Mtihani huu wa nini?

Beniel Seka
Mtihani wa kumaliza elimu ya msingi umekuwa na matatizo mengi. Hivi karibuni viongozi kadhaa wametoa malalamiko mengi kuhusu matokeo ya mitihani hiyo inayoendeshwa na Baraza la Mitihani la Taifa. Tatizo kubwa lililosababisha viongozi hao kuizungumzia mitihani hiyo ni jinsi matokeo yake yanavyotumika kuwezesha wanafunzi wasiojua kusoma au kuandikwa kujiunga na elimu ya sekondari.
Mitihani hiyo imelalamikiwa pia na wadau mbalimbali wa elimu ambao wanaona kwamba nchi yetu inaweza kupata wahitimu wasio na viwango vya kuridhisha ikiwa hali hii itaendelea . Wanahoji inakuwaje mwanafunzi asome kwa miaka saba bila kujua kuandika wala kusoma. Kinachowasikitisha zaidi ni kwamba mitihani hiyo inawathibitisha kuwa wamefaulu na wanastahili kuendelea na masomo ya sekondari.
Tatizo hili limejitokeza zaidi mwaka juzi  (2011), Baraza la Mitihani la Taifa lilipoanza kutahini somo la Hisabati kwa kutumia mtindo wa maswali ya kuchagua jibu sahihi. Tayari Chama cha Hisabati Tanzania (MAT/CHAHITA) kimeshatoa msimamo wake kupinga muundo huo wa mtihani katika somo la Hisabati. Aidha baadhi ya walimu na  wataalamu wengine wameshapendekeza kusitishwa kwa muudo huo wa kutahini Hisabati.
“Somo la Hisabati humhitaji mwanafunzi kuonesha njia aliyotumia kupata jibu,” alisema mwalimu mmoja mzoefu. Kisha aliedelea kueleza, “ Kuandika jibu peke yake hakusaidii kujua fikra alizo nazo mwanafunzi au uwezo wake wa kupangilia ufumbuzi wa tatizo, jambo ambalo ni muhimu sana katika kuelewa somo la Hisabati.”
Ni dhahiri kwamba mtihani huo wa kumaliza shule za msingi kwa sasa unashindwa kufanya kazi iliyokusudiwa. Kama watahiniwa wasio na uwezo, wakiwepo wasiojua kusoma wala kuandika, wanaweza kufaulu, basi ile nia ya kuutumia kuchagua wanafunzi bora imefifia. Tunajiuliza: kwani lazima mtihani huo uwepo? Hakuna namna nyingine ya kuwapata wanafunzi bora wanaostahili kuingia sekondari?
Kuna wakati mtihani huo ulikuwa muhimu maana ulikuwa mtihani pekee hapa nchini kwa ajili ya kuchagua wanafunzi  kuingia kidato cha kwanza katika shule za sekondari.  Wakati huo  hakukuwa na shule za sekondari za binafsi ukiacha zile za seminari ambazo zilikuwa na utaratibu wao wa kuchagua wanafunzi wa kujiunga na shule hizo. Baadaye ziliruhusiwa shule chache za binafsi. Hizi zilichagua wanafunzi wake baada ya zoezi la kuchagua wanafunzi wa sekondari za serikali kumalizika.
Kuanzishwa kwa shule nyingi za binafsi kulianza kufanya zoezi la kuchagua wanafunzi bora liingie dosari. Shule hizo za binafsi ziliingia katika ushindani wa kuwapata hao wanafunzi bora. Baadhi ya shule zilianza utaratibu wa kuwapa wanafunzi waliomaliza darasa la saba mtihani kabla ya matokeo ya mtihani wa taifa kujulikana. Kuna shule ambazo tayari zina umaarufu kiasi kwamba wanafunzi wakichaguliwa kuingia shule hizo hukataa  kuitikia ule wa shule za serikali. Hapo shule za sekondari kwa kiasi kikubwa huwakosa wale walioamua hivyo na husababisha uchaguzi wa pili kwa ajili ya kujaza nafasi zao. Huenda ndio sababu baadhi ya shule binafsi hufanya vizuri zaidi ya zile za serikali.
Hatushangai siku hizi kusikia kwamba baadhi ya shule za binafsi zinaongoza kwa kufaulisha wanafunzi katika mtihani wa kumaliza elimu ya sekondari. Kwa hiyo hapa tunaona kwamba wenye shule hizo wametumia mtihani mbadala kupata wanafunzi hao. Wala hawakuhitaji kuiita mitihani yao jina la ‘kitaifa’ kupata wateja. Umaarufu wa shule hizo ndio unafanya wanafunzi kutoka sehemu zote nchini kutafuta nafasi katika shule hizo. Hapo ndipo wanafanya mtihani pamoja na usaili.
Kitu kinachofanya mtihani wetu wa taifa uwe mgumu kufanikisha malengo ni gharama kubwa za uendeshaji kuanzia kutunga, kusimamia, kusahihisha hadi kuchakata matokeo. Baraza la Mitihani linapolalamikiwa kuhusu mtihani wa kuchagua jibu sahihi hujitetea kuhusu gharama. Ni kweli usahihishaji unakuwa umerahisishwa sana kutokana na kuwepo na tekinolojia inayowezesha usahihishaji kwa njia ya kompyuta. Lakini kwani lazima kufanya mtihani wa kitaifa? Shule nyingi zinazochukuwa wanafunzi hao ni za kata!

Kuna kanda za kielimu. Kwani mitihani hiyo haiwezi kuendeshwa kikanda? Hili ni kwa ajili ya kupunguza tu tatizo, lakini tukitaka kuboresha zaidi tunaweza kuiendesha  kimkoa au hata ngazi ya wilaya. Hapa tuna maana ya utunzi na hata usahihishaji. Nadhani ule mtihani wa darasa la nne ulikuwa unatumia njia hii. Kama ulisitishwa kwa sababu za gharama za uendeshaji, hapa nakaa kimya. Nisingependa turudie kosa.
Baada ya matokeo ya mwaka jana (2012) kutangazwa, tumefahamishwa kuwa wale waliochaguliwa kuingia kidato cha kwanza itabidi wafanye mtihani mwingine kubaini wale wasiojua kusoma wala kuandika. Kwani hawakujulikana kabla ya kufanya mtihani huo wa taifa? Kuna viongozi wa nchi waliwahi kuhoji inawezekanaje mtoto amalize elimu ya msingi bila kujua kusoma na kuandika? Tungerekebisha utaratibu huo mapema badala ya kuingia gharama za mtihani mwingine.
Pendekezo la mwisho ni kuachana na mtihani huo wa kumaliza elimu ya msingi. Tunajua kwamba kuna mitihani ya mihula ambapo wanafunzi wanapangwa kwa nafasi zao darasani na mzazi au mlezi  kupewa matokeo kumjulisha maendeleo ya mtoto. Najua baadhi yetu tutasema mitihani hiyo sio sanifu au haina viwango vya kuridhisha. Kama walimu watakuwa waaminifu na kutoa haki sawa kwa wanafunzi wote, njia hii inaweza kutoa matokeo sahihi zaidi ya yale tunayoshuhudia wakati huu. Tunachotakiwa kufanya ni kuongeza mafunzo ya utungaji wa mitihani kwa walimu wetu.
Labda baadhi yenu mnajiuliza wanafunzi watakaojiunga na sekondari za vipaji watapatikanaje. Hao watakuwa wameshaanza kujitokeza katika majaribio (testi) na mitihani ya mihula. Katika ngazi itakayoonekana inafaa , wanafunzi hao wenye vipaji wanaweza kupewa mtihani maalum ulio na vigezo vya kumtambua mwanafunzi kiuwezo. Tusaidiane kuondokana na tatizo hili la mtihani wa kumaliza elimu ya msingi. Tunahitaji wanafunzi bora na siyo bora wanafunzi kwa mendelezo wa elimu bora kwa ngazi zote. 


END

Kwa nini sio trilioni?

Beniel Seka
Waziri wa Fedha Mheshimiwa Dk William Mgimwa (Mb) katika hotuba yake ya bajeti aliyotoa bungeni tarehe 14 Juni 2012 huko Dodoma hakutaja neno trilioni hata mara moja. Pengine alikuwa na sababu maalumu za kutolitumia neno hilo. Baadhi ya waliokuwa wanamtazama kwenye televisheni na waliokuwa wanamsikiliza kwenye redio walijiuliza kwa nini amelikwepa neno hilo.
Tumemshuhudia akisema: “bilioni elfu kumi na tano” kwa maana ya 15000000000000 badala ya “ trilioni kumi na tano” au kumi na tano trilioni ili kuitofautisha na 10000000000005. Aliendelea na mtindo huo wa kutaja bilioni pale ambapo angeweza kusema trilioni. Sio kwamba alifanya makosa ila kwa nini alikuwa na msimamo huo wakati kuna neno moja  lenye maana ya bilioni elfu moja? Hata hivyo alilitumia wakati wa kuhitimisha hoja. Labda alishauriwa kufanya hivyo.
Baadhi ya watazamaji na waliokuwa wanamsikiliza walipata taabu kiasi pale ambapo elfu ilipotumika mara mbili kwa namba moja. Kwa mfano, “ bilioni elfu mbili  milioni  na tatu elfu tisini  tisini milioni(2003090000000) inasumbua kuisoma”. Hii inasomwa : “trilioni mbili bilioni tatu na milioni tisini.”  Wale waliokuwa wakiangalia matangazo hayo kupitia Star Tv na ITV waliweza kusoma maneno chini ya luninga zao yaliyokuwa yametaja namba husika kwa trilioni badala ya bilioni elfu.
Wakati wa kuwasilisha bajei ya mwaka huu wa 2013/2014, Mheshimiwa Waziri Mgimwa alilikwepa tena neno hilo hadi sehemu ya mwisho wa hotuba yake. Ilionekana wazi jinsi kuacha kulitumia kulivyomsumbua kusoma tarakimu hizo na ilimlazimu kurudia ili kueleweka. Lakini alipokuwa anafanya muhtasari alitaja neno hilo na hakusumbuka tena. Kwa mfano alisema,”Bajeti ya mwaka 2013/2014 ni zaidi ya trilioni kumi na nane”.
Wabunge waliojadili hoja ya wazirimwaka jana na waandishi wa habari walitumia neno hilo bila wasiwasi wowote. Ni neno linaloshika kasi kubwa katika bajeti yetu baada ya bajeti yetu kufikia namba ya kiwango hicho. Tulikuwa na bajeti za mamilioni, zikafuata za mabilioni na sasa tuko na bajeti za matrilioni. Sina uhakika kama Baraza la Kiswahili la Taifa  (BAKITA) limeshatoa neno mbadala kwa trilioni. Kama sio, basi litoholewe liwe rasmi.
Pengine tatizo ni namna tunavyoliandika. Linaonekana kama neno la kigeni mno. Labda lingekuwa na matamshi ya Kiswahili na kuwa tirilioni. Vilevile si vizuri kutunga neno jipya kabisa kwa sababu trilioni ina mzizi (au kiambishi awali) “tri” ambapo maana yake ni “tatu”. Ina maana tunaanza na milioni kama “moja”, inafuatiwa na bilioni (bi ikiwa na maana ya “mbili” na hatimaye trilioni. Ukiwa na milioni unazidisha kwa elfu kupata bilioni na ukiwa na bilioni unazidisha kwa elfu kupata trilioni.

Inawezekana kuwa mheshimiwa waziri alilenga watu wa kawaida na kuwaachia wasomi kutumia wenyewe neno trilioni. Ninanasema hivyo kwa kuwa kiwango cha elimu ya msingi kwa mujibu wa muhtasari wa Hisabati Darasa la Saba wa mwaka 2005 uliotolewa na Wizara ya Elimu na Mafunzo ya Ufundi ni bilioni. Hata hivyo kiwango hicho kimewekwa kwa ajili ya ukokotoaji tu. Viwango vingine vinaweza kutumika kwa kutumia stadi hizo hizo.
Ni vyema kukumbuka namba za viwango kama ifuatavyo: Kumi ina tarakimu mbili (moja na sifuri moja). Mia moja ina tarakimu tatu (moja na sifuri mbili). Elfu  moja ina tarakimu nne (moja na sifuri tatu). Elfu kumi ina tarakimu tano (moja na sifuri nne). Laki moja ina tarakimu  sita (moja na sifuri tano). Milioni  moja ina tarakimu saba (moja na sifuri sita). Bilioni moja ina tarakimu kumi (moja na sifuri tisa). Trilioni moja ina tarakimu kumi na tatu ( moja na sifuri kumi na mbili).
Kama ulivyokwishaona, namba ya kiwango cha trilioni ni kubwa. Kuandika tarakimu kumi na tatu bila kusahau au kuchanganya tarakimu si jambo rahisi. Wengine hutenganisha namba hizo kwa alama ya mkato lakini utaratibu huo ulishapendekezwa na shirika la kimataifa la viwango (ISO) uachwe. Mapendekezo hayo yametekelezwa kwa mtaala wa Hisabati tu. Nyanja nyingine bado watumiaji hawajaanza kuutekeleza na pengine hawautaki.Mfano ni wahasibu na benki. Hawa hata usipoiweka wataiweka kulinda fani yao.
Kwa kutambua tatizo hilo, namba kubwa hufanyiwa makadirio. Kwa mfano, tunaposema  bajeti ya serikali ni shllingi za Tanzania trilioni kumi na nane hatuna maana kwamba hakuna mamilioni au mabilioni. Zinaweza kuwepo lakini kwa kuwa ziko chini ya nusu trilioni zikaachwa kutajwa kwa kukadiria trilioni ya karibu. Au pengine ilikuwa trilioni kumi na saba na bilioni mia tano au zaidi ya bilioni mia tano kwa hiyo ikakadiriwa kwa trilioni ya karibu kuwa trilioni kumi na nane.
Unaweza pia kutumia namba mchanganyiko kutaja namba kubwa kwa kukadiria. Kwa mfano, unaweza kusema shilingi trilioni kumi bilioni mia tano ni shilingi trilioni kumi na nusu. Pia namba hiyo inaweza kutajwa kwa desimali kwa kusema trilioni kumi nuka tano. Wabunge wengi waliochangia mawazo yao katika bajeti hiyo wametumia mtindo huo. Huu ni mtindo rahisi katika usomaji wa namba zenye tarakimu nyingi. Kwa mfano, namba 1367300000000 inaweza kusomwa: “trilioni moja nukta tatu sita saba tatu.”
Ningependa kutahadharisha kuhus jambo jingine linalotatanisha wakati wa kusoma namba. Kuna namba ambazo zikisomwa huweza kuandikwa tofauti na ilivyokusudiwa. Kwa mfano, “elfu kumi na moja”. Mtu anayesikiliza anaandika 10001. Kumbe aliyekuwa anasoma tarakimu ilikuwa imeandikwa 11000. Ndio sababu inashauriwa kwamba namba hiyo isomwe: “kumi na moja elfu”.Hili tumeshaliona hapo juu.
Katika muhtasari wa sekondari wanafunzi wanajifunza mada iitwayo kuandika namba kwa mtindo wa kisayansi (scientific notation or standard form). Hii huwajengea wanafunzi uwezo wa kuandika namba kubwa au ndogo sana kwa kuweka nukta baada ya tarakimu na kuandika kwa kipeo kupata kiwango cha namba. Hii hurahisisha sana kujuakiwango cha namba husika na husomwa kwa desimali. Kwa mfano, 18234000000000 huandikwa 1.8234x1013  na husomwa moja nukta nane mbili tatu nne mara kumi kipeo cha kuminna tatu. Tunajua sasa namba lkiwa  kwenye kumi kipeo cha 13 ni kiwango  cha trilioni kumi.

Mwjsho ningependa kushukuru kwa lugha yetu ya Kisahili kuwa na neno  laki maalumu kwa elfu mia. Sina uhakika kama Waingereza wanalo neno kama hilo. Tunaomba BAKITA na wataalamu wengine waendelee kutafuta istilahi kwa ajili ya kurahisisha uwasilishaji wa taarifa mbalimbali. Hili linawezekana. Tuongeze bidii.

Mathematics and Aids

Beniel Seka
“Graduate with A’s not AIDS”. These are words which appear on notice boards of many higher learning institutions in Tanzania. They are meant to educate students to guard against being infected with the deadly disease called AIDS which so far has no cure. The campaign to combat the spread of this disease has been conducted in schools as well as communities throughout the world. The aim is to ensure that everybody has enough knowledge about the disease and is ready to collaborate with various government and non-government agencies in eliminating it.
There are several slogans uttered during the campaign including “Life without AIDS is possible. It begins with you.” The Government has stipulated that whenever there is a gathering, be it a seminar or a workshop, effort should be made to include few minutes of educating the participants on the HIV/AIDS problem. The United Nations Organisation has set the first of December as the International Aids Day. Governments and related organisations use this day to deliberate on actions to eradicate the endemic disease. The National festival this year (2012 was held in Lindi. During the festival, the need for checking one’s HIV status was reemphasized
HIV testing services including Voluntary Counselling and Testing (VCT) have been available to people who are symptomatic or those who want to know their HIV status. VCT has traditionally been recognised as the key entry point for developing integrated prevention and care for adults as well as children. The media has also played an active role in educating the public on the need to check their health status. For example, Mr Marine Hassan of TBC1 in Jambo Tanzania television broadcast on 12th December, 2012 welcomed two experts to talk to the public on blood donation campaign. “Blood is tested for HIV,” they said.  Several documents have also been developed to help in the campaign.
One prominent mathematician has come up with an idea of extending the campaign by using mathematics concepts. The book which is written in Kiswahili bares the title ‘Kipeo na Kipeuo Wapima UKIMWI’ (Power and Root Test for HIV/AIDS). The book was published by Kapsel Educational Publications of Dar es salaam in 2004. The main characters of the book are Power Two and Square Root. They are derived from mathematics topics which usually pose difficulties to pupils. The author uses simple events to explain the concepts by employing the AIDS scenario. In this way, readers enjoy the story and at the same time learn about HIV/AIDS.
The author chose a country called Mathematics to discuss issues related to HIV/AIDS. The occupants of this country are Addition, Multiplication, Subtraction, Division, Algebra, Circles, Rectangles, Numbers, Squares, Power Two, Square Root, Compass, Ruler, Pencil and many others who can be named by a mathematical term or symbol. Power Two is married to Square Root and they have a child called Pi written in symbol as π. Pi is a constant in mathematics which means circumference ( distance around a circle) divided by its diameter.
The book narrates how Average, which is the sum of numbers divided by number of terms, invited a health officer in his village called Statistics to give a presentation on HIV/AIDS. The guest spoke about the causes symptoms and spread of the decease. At the end of the presentation, participants (villagers) were allowed to ask questions. Mr Square Root was among those who were lucky to ask a question. He wanted to know how a child got HIV while it had not engaged in sex. Average explained how a child could be infected by an infected mother during birth and lactation.
The book also narrates how the villagers celebrated the International AIDS Day in one particular year. The celebration involved a procession that passed in front of the guest of honour, Mr Zero. The procession was done in groups of families. The participating villagers carried placards which displayed various messages about HIV/AIDS. The guest of honour read the messages aloud for people to digest and internalise.
Each message was constructed in such a way that it portrayed a concept in mathematics and a corresponding prevention of HIV spread method. For example, the Geometry group consisting of Rectangle, Circle, Triangle and Square displayed the message ‘Huwezi kumtambua mwenye virusi vya UKIMWI kwa kutazama umbo lake’ (You cannot identify an HIV victim by looking the shape of the body). A follow-up message read ‘Unaweza kujua tu kwa kupima’ (You can only know by testing).
Another event of the celebration involved dramatization. One and Three (MALES) were seen looking at a beautiful lady who passed near them in a very provoking manner. Three did not take time to express his desire to that lady. One warned her that her husband had died of AIDS. He also informed Three that the lady had also lost her young baby probably by infection from mother to child. “IF I had not told you this, she would have captured your attention and probably become a victim sooner or later,” concluded One.
The two individuals shifted their talk to discuss about their friend Compass. A pair of compasses contains a ‘female’ part in which a pencil (‘male’ part) is inserted when drawing circles and arcs. Pencils are replaced quite often for a number of reasons. “If for example, Pencil is infected with HIV, Compass will be infected too,” stated Three. “This means that Protractor which measures the size of angles, and his cousin Set Square and his uncle Ruler will also be affected if the use the same pencil.”
One thought for a while and said, “Well, the best way to avoid further infection is Compass to stick to one Pencil. A pencil should remain fixed in the compass. It should not be removed to draw lines, points or geometric figures.  This implies that sexual partners should be faithful to each other. Any attempt to violet this can cause catastrophe”.
The book points out that after the celebration; Power Two was moved by the events. She had practised pre-marital sex before she met Square Root. She had not taken any precaution. She was worried that she could have contracted the HIV although she showed no symptoms. She decided to convince her husband to accompany her for both of them to visit their nearest VCT centre. Her husband agreed after a long struggle. 



                                                                                                                                                                                                                                     
                         O                                     
                          O   8
 



   
 Square Root          Power Two
            9 =3                       32 = 9
 Square root of 9 equals 3. Three squared equals 9.
The author joins Benjamin Mkapa HIV/AIDS Foundation established in 2006 to improve the delivery of services for HIV and AIDS through innovations in health systems.
  
                                                                                                                                                                                                        



END (Further contact 0784498893)